翻訳と辞書
Words near each other
・ Herecomesthebride Stakes
・ Heredeiros da Crus
・ Heredero
・ Herederos
・ Herederos de una venganza
・ Heredia
・ Heredia (canton)
・ Heredia (etymology)
・ Heredia (genus)
・ Heredia Jaguares de Peten
・ Heredia Province
・ Heredia, Costa Rica
・ Heredia, Álava
・ Hereditament
・ Hereditarianism
Hereditarily countable set
・ Hereditarily finite set
・ Hereditarnia
・ Hereditary angioedema
・ Hereditary benign intraepithelial dyskeratosis
・ Hereditary breast–ovarian cancer syndrome
・ Hereditary C*-subalgebra
・ Hereditary CNS demyelinating disease
・ Hereditary Commander
・ Hereditary coproporphyria
・ Hereditary cystatin C amyloid angiopathy
・ Hereditary diffuse gastric cancer
・ Hereditary diffuse leukoencephalopathy with spheroids
・ Hereditary Disease Foundation
・ Hereditary education policy


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hereditarily countable set : ウィキペディア英語版
Hereditarily countable set
In set theory, a set is called hereditarily countable if it is a countable set of hereditarily countable sets. This inductive definition is in fact well-founded and can be expressed in the language of first-order set theory. A set is hereditarily countable if and only if it is countable, and every element of its transitive closure is countable. If the axiom of countable choice holds, then a set is hereditarily countable if and only if its transitive closure is countable.
The class of all hereditarily countable sets can be proven to be a set from the axioms of Zermelo–Fraenkel set theory (ZF) without any form of the axiom of choice, and this set is designated H_. The hereditarily countable sets form a model of Kripke–Platek set theory with the axiom of infinity (KPI), if the axiom of countable choice is assumed in the metatheory.
If x \in H_, then L_(x) \subset H_.
More generally, a set is hereditarily of cardinality less than κ if and only if it is of cardinality less than κ, and all its elements are hereditarily of cardinality less than κ; the class of all such sets can also be proven to be a set from the axioms of ZF, and is designated H_\kappa \!. If the axiom of choice holds and the cardinal κ is regular, then a set is hereditarily of cardinality less than κ if and only if its transitive closure is of cardinality less than κ.
==See also==

*Hereditarily finite set
*Constructible universe

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hereditarily countable set」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.